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NOTATION

C Phase velocity of a longitudinal elastic wave.

C, Phase velocity of a longitudinal elastic wave when
the wavelength is much larger than the diameter
of the elastic rod.

E Young,'s modulus.

K Stiffness of the mount.

I Length of the mount.

Mass of the mounted machine.

m Mass of the elastic material of the mount.

% Dimensionless damping parameter uip72E

R Lumped resistance of the mount.

Ro Critical resistance.

S Cross-sectional area of the mount.

T Transmissibility.

is Particle displacement in the elastic material.

v Particle velocity in the elastic material.

Y Admittance per unit length of the transmission line.

Z, Characteristic impedance of the transmission line.

a Attenuation function.

P Phase function.

V Propagation function.

a Shear viscosity of the mount material.

p Longitudinal viscosity of the mount material =4/$(18+4)0

V Poisson's ratio.

p Density of mount material.

V, Longitudinal stress.

'rsy Shear stress.

W Angular frequency.

We Angular frequency at the spring moas resonance.

Ut Angular frequency at the standing wave resonances.



WAVE EFFECTS IN ISOLATION MOUNTS

by

Mark Harrison, Alan 0. Sykes, and M. Martin

ABSTRACT

Both theoretical and ezpermental studies of wave effects In isolation mounts

have been made. From the standpoint of vibration isolation, wave effects are im-

portant in the mse that the vibration isolating properties of a mount are changed
by their presence. The wel-known "lumped parameter" theory of vibration mounts

predicts that the vibration isolation of a mount increases at 12 db per octave for

frequencies weU above the resonant frequency of the spring-mass system. This

theory holds true only when the wavelength of the elastic wave in the mount is

large compared to the dimensions of the mount. Standing waves occur, as would be

epected, which in certain frequency ranges decrease the vibration isolation proper-

ties of the mount by as much as 20 db. For practical mounts, wave effects are

most detrimental in the most audible frequency range (500 to 1000 cps). The theo-

retical and euperimental treatments are in good agreement, and indicate various
methods for improving the vibration isolation properties of the mount. Experimen-

tal data concerning isolation mounts fabricated of various materials are proented.

INTRODUCTION

If the performance of a typical isolation mount is measured, it is

found that It departs from that which Is predicted from simple vibration
theory. This theory, which is based upon treating the spring, mass, and the
resistance as lumped parameters, predicts that the vibration isolation of a
mount increases at 12 db per octave for frequencies well above the resonant
frequency of the spring-mass system. A detailed treatment of the lumped
parameter theory will not be given in this paper, as it has been adequately
presented in many texts on vibration engineering.' The performance of a
mount in regard to vibration isolation is usually measured in terms of trans
missibility, which is defined as the ratio of the force delivered by a mount

to a base ennsisting of an infinite rigid mass to the.,orce developed by the

1Refeerenoce ari ostd. an pegs 22.
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machine. In decibels, the transmissibility Tis given by

T - 20oWg. .

It is found experimentally that the transmissibility of an actual mount

behaves in a manner that is illustrated in Figure 1. Reference 2 contains

extensive data on many commercial isolation mounts, and these data all show

that the transmissibility decreases at 12 db per octave for a limited fre-

quency range only, while at higher frequencies a complicated behavior that

is suggestive of standing waves is revealed.

It is the intention of this paper to explain the actual behavior

of mounts in terms of wave effects. (The mounts will be treated as acoustic

transmission lines with traveling and standing waves.) These waves are

elastic, and for complicated mounts may be combinations of shear, compression,

bulk, torsion, and Rayleigh surface waves. It may be seen from Figure 1 that

wave effects have the ability to impair the noise isolation properties of

the mount. It will be seen that standing waves can increase the transnissl-

bility of a mount in certain frequency ranges by as much as 20 db above that

which would be predicted from simple vibration theory. At higher frequencies,

however, the transmissibility may be decidedly reduced.

The method of treating this problem has been both experimental and

theoretical. On the experimental side, actual mounts have been constructed

and their transmissibility measured. They are intended to be idealizations

of compression mounts, though sufficiently similar to practical mounts to

preserve the essential features. On the other hand, the mounts are suffi-

ciently simplified to permit an adequate theoretical treatment without need-

less complications.
The agreement between theory

and experiment is sufficiently good tc

6so -., - Justify the principal thesis of the
£ c - -study, namely, that an adequate treat-

-4.o - -nment can only be given by viewing the

I V"" isolation mount as a continuous elastic
go structule in which wave motion occurs.

-I0

Freianey Ma ape

Figure 1 - Experimental Curve of
Transmissibility T in db

versus Frequency in cps
LWd N•ut 2ooxm10.
Nmohlm n 9.• lb.



THEORETICAL DISCUSSION

Longitudinal wave motion in an elastic rod with viscous moduli
and whose diameter is small -ompared to the wavelength is given by the *qua.

tionb

Because of the finite cross section of the rod, there will be

lateral motion and lateral stress, so this derivation is not exact. The

effect of this approximation on the velocity and damping will be discussed

in the Appendix.

Solutions of Equation [1] for the case of an elastic rod terminated

at one end by an infinite rigid mass and with the other end excited by a

simple harmonic driving force F o- F,.j1 will now be investigated. For this

case, Equation [1] becomes

a s a(E +X [2]

The solution to this equation is

u -A,ey+AvC-8 [3]

wnere 7 - a +jP, the complex propagation function.. If wo Y << 1, then it may

be verifed .by substitution that

[5]

C [61

An exact solution to the differential equation has been given by

Nolle,* but it develops that for the amount of damping in the mount consider-

ed in this paper the error in using this approximate solution is negligible.

The termitiation of the rod in the infinite rigid base, as shown in Figure 2,

imposes the boundary condition u - 0 at x - 0 . At z- I . P .F/IS. Equation

[3], when solved using these boundary conditions, gives two equations that

lead to the two equations,



___ ___ __ ___ __[873

p(g) - $ood8J

It is to be observed that the reciprocal at the admittance per unit laegth
of the tras mission line is given by

1 _19

For those who like analogies, the case

here is one of an open circuited trans-

.lw mission line whose mories imp.edance is

an inductance and whose shunt impedance

is a resistance in series with a capacity.
S - ,In the present treatment, use will be

.LFet ..-- , made of the well-known formal identity

of acoustic and electrical transmission
Figure 2 - Diagram of Isolatiorn

Mount and Acting Forces line equations. In this point of view
one merely needs to know I and Z.. The

propagation function has already been found (Equations (43 and [5]), and the

characteristic impedance ZX is known to be pC,.

All transmission line relationships given in the subsequent treat-

ment are contained elsewhere.$

The isolation mount is represented in Figure 2. The relationships

for. the forces shown in the figure are

A z[1131

where Z, the input impedance of the mount, is given by the equation,

Z -Sz*e th 71 [123

The raticoof F.. toF is given by

TW - 1133T- r - "2AJ•1
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This ratio of forces Fee/F is defined as the transmissibility T for the mount.

It is instructive to observe that this gives the simple vibration

theory for the mount when the wavelength of sound in the mount is much larger

than the physical length of the mount. From Equation (9] it is seen that

Zo=..- (-14

Equation [13] can then be written
1

"jWM sinh yl. + comb Y1 [13a]

T4 'W :)]
Now as A >> ,YI * 0, so that sinh Y1-b Y.. The expression for T then becomes

Rj - *"

where R and K have been defined by the equations,

R PS

(16]
ESK=,-

These quantities are the ordinary resistance and stiffness of the mount that

are used in vibration theory. The magnitude of T can be written in a con-

venient nondimensional form,

r1+'"lI ( 2)!W--('R \11'71

where we - (K/IMT, and R,. 2 (KM) This equation is more adequately dis-

cussed in Reference 1.

For purposes of computation, Equation [13] can be put, into other

forms. In the discussion of vibration mounts, only the magnitude of T is of

interest, so the following treatment is accordingly restricted. After no in-

considerable amount of algebra, the magnitude of Equation [13] can be written

ITI'. 1+5((1+ 5n')(pinh'@1 + cos'p1] + (•-•~)'(sinh'aL+ sin'pi] + (P,) uMnh@-( u)sn2
[xih.[+ " jsinhd-2(l+ 2) sin 2,O18]kp~es[18].
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where n is the nondimensional damping parameter and is equal to wa/3E.
It Is instructive to examine Equation [18] when the viscous damping

is zero. Setting n - 0 we obtain

IT[1 [19]
wM

llowPL- ;-cs sinB/I

It is convenient to introduce the following nondimensional
quantities

Rm .IM2E

,1 - W/'o (O/M) I'

ail - ttw/ (m/M)"3

(M/PcjS - I/io (M/m) 1't

where m upIS , the mass of the elastic material in the isolation mount.

Equations [18] and [19] then become

1+ 5X2 + r-ý! (M~l ] I sinht' -! 1M/+6n -iM 1L 2sh[2n-!t- im~1

+ (1 + 54 ) eoe '[)- ( -m ) V 3] [ +([±L M 1 , r 2(o )/ [2 0 ]

60 M wo (AM)/1/ mint12
TI (/2

ITIj IL mn !t [21]
ko. M 1 wo IM) 1/

These are the forms that best lend themselves to discussions and computations.

It is 20 logT, with T given by Equation [20], that is plotted in Figures 3 -
7, inclusive. The denominator of Equations [20] and [21 ] becomes a minimum

when
M,- i- , 2, 3... [22]

The corresponding values of .w are the standing wave angular resonant fre-

quencies. The denominator of Equations [20] and [21] becomes a minimum when

W/&.(w.M/•) becomes siall because of w approachingu.. This gives the
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ordinary vibration theory resonance.
It is of interest to write Equation [17] using a different notation.

After oonsiderable algebra the equation can be written

T4%1 (23]

It should be noted that in this case a becomes identical with the ratio RIR.
that is introduced asa dimensionless parameter in the ordinary vibration
theory. This can be shown directly by going back to the definitions of %,

R, and R,, and performing the necessary algebra. At the low frequency reso-

nance, when damping is not too large, the expression for the transmissibility.

becomes approximately
To-1 (24]

It is also of interest to point out that

1
"*2Q0  [25]

where Qi is the Q at the low frequency resonance, and is defined by the equa-
tion Q. -we Ml/eo

It may seem surprising that the mass ratio, MARi, turned out to be
a fundamental parameter in the preceding treatment, so it seems appropriate
to add a few words of explanation. Suppose that both the machine mass M and
the low resonant angular frequency w0 are specified. Since uw a (K/M)4-

K is also specified. With K specified, it is still possible to make an In-

dependent choice of a. For example, if the mount is a circular cylinder, K,
is given in terms of the area, length, and Young's modulus by,the equation,

K- =._S (26]

Keeping K and R constant still permits an arbitrary choice of S. By choosing
S and I large or small, the value of m can be made large or small. The shape
of the mount changes with the value of a since the linear dimensions of the
mount do not remain proportional.. In conjunction with these Ideas, Equation

(26] can be written

K (27]
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where p -rn/SI. •rnus it is seen that
40

choosing K still leaves us free to
t choose 0, and this is tantamount to

choosing a shape for the mount.

.2o0 Returning to the discussion

e-40-. of the theoretical curve of transamissi-
0-C• " bility, there is plotted in Figures 3 -

01 _ _ _ _ _7, the transmissibility T versus the

nas, frequezAcy ratio w/u, for a mass rat~io
..0 10 o M/= of 100 and for three values of the

Wo damping parameter, %i: 0.03, 0.1, and
Figure 3 - Theoretical Curve of 0.3. Most practical mounts have mass
Transmissibility T in db versus

Frequency Ratio D/ao for a ratios between 100 and 1000, and values
Mass Ratio M/'s. 100 of n between 0.1 and 0.03. The previ-

ously mentioned curves are computed on the assumption both of constant veloc-
ity of the elastic wave in the mount and of constant a. This is only approxi-

mately true in actual mounts, but plotting the curves on this basis helps re-

veal the pertinent features..

In Figure 3 it is seen that the mount obeys the lumped parameter vi-

bration theory until w approaches standing wave frequencies. The transmissi-

bility versus frequency curve then departs from the familiar 12-db per octave

relationship. The standing wave frequencies can be computed by the approxi-

mate relationship, 1/ 1
w•/Uo-S. - 1,9,8,. ..

where w, is the angular frequency of the

standing wave. The transmissibility
40 Ti,at wi can be computed from the

0 zcapproximate relationship,

0 . W
_._ _2 te(M) e[ting on

__40_ which is an approximation of Equation

____ ____ 20). It is interesting to note that
)-so /the peaks in the transmissibility be-

-01 .o0 \ cause of the standing waves decrease.

. 1 1.0 10 10 1000 at 12 db per octave and are displaced.AL
01o upward from the simple vibration theory

Figure 4 -. Theoretical Curve of curve by 20 logn. The valleys between
.Transmissibility T in db versus the peaks decrease at 6 db per octave,

Freouency Ratio /eo -for Damping and the standing waves are no longer
Kazmetor a - 0.1 and for

Various Naas Ratios discernible for frequency ratios above
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the ratio where a line drawn through 40

the peaks and valleys intersects. It to

can be shown that for these high fre- V

quency ratios the mount can be viewed '-______

as a dissipative medium in which the = _ _____

elastic waves are exponentially atten- .2S ____

uated. In this frequency range the !-so

transmissibility decreases at an accel- 1-80 -

erated rate, as the figures clearly .1 1 LO

show. W

Figure 3 illustrates the ad- Figure 5 - Theoretical Curve of

vantage of high damping. This is at Transmissibility T in db versus
Frequency Ratio w/kw for Damping

variance with the simple vibration Parameter n = 0.1 and for

theory which states that high damping Various Mass Ratios

can increase the transmissibility. The discrepancy between the conclusions

has its basis in the fact that simple vibration theory is only a partial

description of the situation.

Figure 4 shows the transmissibility for various mass ratios, with

the damping held constant. In this situation there does not appear to be a

universally best mass ratio. The mass ratio that gives the best performance,

i.e., the smallest transmissibility, in one frequency range may give poor

performance in another frequency range.

In Figure 5 a comparison is made upon a different basis--the machine

mass M is specified and the stiffness K and hence, the resonant frequency Wo

is varied, since we= (K1/ " However, K is varied by changing only the

cross-sectional area of the mount and leaving the length of the mount constant.

K to given in terms of the dimensions 40

of the mount by the equation K-E(S/1), 40_-

where S is the cross-sectional area, to

lis the length, and E is Young's modu-. 0

lus. In the figures, the transmissi- s.2o

bility in decibels is plotted versus ;.40

the dimensionless frequency ratio j.oC

&/1/,, where wi is the angular frequen- P--.

cy of the first standing wave. The .0 10 0 00

results lead to the same conclusion "rOOenc in ape

as does the simple vibration theory,

namely, that wo should be as low as Figure 6 - Theoretical Curve of
Transmissib,)ity'T in db versus

possible to give low transmissibility Frequency for Damping Parameter

at high frequencies. Figure 6 results n - 0.1 and Two Mass Ratios
Differing by a Factor of
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40 from the same conditions that were ob-

20 served in Figure 5, except that the
_____ stiffness is changed by varying the

__length of the mount rather than the
'!'20 cross-sectional area. An arbitrary fre-

e 40quency scale is used since there are noI.-60 convenient dimensionless frequency

00 - parameters. The stiffness for the two
""100 curves differs by a factor of three.

H The standing wave frequenciewi,,varyWe
inversely with the length of the mount,

Figure 7 - Theoretical Curve of wietelwrsnn rqec ,

Transmissibility T in db versus while the low resonant frequency, w.,
Frequency Ratio w1ao for a varies inversely with the square root

Mount Constructed of Buna of the length. The conclusion indicated
The mee ratio N/us u 10 en - ape. here once again is that it is advanta-

geous to have w. as low as possible.

In Figure 7 the theoretical curve is given for a mount constructed

of Buna-N cement. The data for this were obtained from Reference 4. This

curve is included because Buna-N has remarkably good properties with respect

to the amount of damping, and the effects of standing waves tre negligible.

In fact, the transmissibility is less than simple vibration theory would

lead one to expect.

EXPERIMENTAL RESULTS

The types of mounts which were studied experimentally were compres-

sional and of cylindrical form. One spring mount was considered to show that

the method of analysis used was applicable. There were various reasons for

choosing a particular shape of mount and the material from which the mount

was fabricated. Actual compression mounts have complicated shapes and often

operate with complicated constraints on the boundaries. As such, they pre-.

sent an impossibly difficult analytical problem. A circular cylinder with

its ends bonded to the metal disks was chosen because if it became necessary

to obtain an analytical solution to the elasticity problem, it would be possi-

ble to do so. Actually, it has not yet appeared imperative to obtain the

exact solution to the elastic problem, though it does appear desirable. In

this study. the analytic problem has been circumvented by using cylinders of

different length to diameter ratios. If the length of the cylinder is con-

siderably larger than the diameter, then the stress distribution is plane

over a cross section sufficiently distant from the constraint on the ends

which results from the rubber-metal bond. Conditions are ideally simplified
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in this case, and the theoretical results apply to an excellent degree of

approximation, since the elastic properties of the cylinder are uniform

throughout most of its length. Here, for example, the stiffness Kis quite

accurately related to Young's modulus E by K -ES/l, where S and I are the

cross section and length of the cylinder, respectively. If, however, the

length of the cylinder is considerably smaller than the diameter, then the

effect of constrained ends is to complicate the stress and strain distributio,,

near the ends of the cylinder. This results in velocity and damping changes

in the mount material. Also, if one attempts to compute K as indicated above

he would use, instead of E, some effective modulus which is a function of S/1.

This function can be obtained analytically or experimentally. This effect

of the constrained ends is called the "end effect" and is discussed in the

Appendix.

The mounts were all tested with a low value of mass ratio, M/m,

since for large mass ratios the transmissibility becomes small at relatively

low frequencies and difficulty with noise pick-up is encountered. For large

mass ratios, there is no reason to expect the mount to behave in a manner

different from that predicted by theory. It is expected, however, that the

effective stiffness of the mount will change with different loads, since

the static stress-strain curve is not-quite linear.

The mounts were constructed from conveniently available materials.

Some of the materials were rubber with ordinary elastic and damping constants,

corprene, cell-tight rubber, and a steel helical spring. These materials

were chosen because it was believed that their unusual physical properties

would exaggerate various effects and provide a test for the applicability of

the theoretical ideas.

Table 1 gives the physical dimensions of the cylindrical mqunts,

their mass m,and the designation by which the mounts are referred to in the

figures. The numerical designation refers to a kind of material, and the

alphabetical designation distinguishes various shapes for a particular kind

of material.

Tables 2. 3, and 4 present data on the static and dynamic stiff-

nesses. In Table 2 it is seen that the dynamic stiffness is always larger

than the static stiffness. The static "end effect" should also be noted.

If there was no end effect, changing the length of the mount by a factor of

two should change the stiffness by a like factor. Comparing the static stiff-

ness data for mounts IC and ID, it maybe seen that changing the length by a

factor of two results in a change in the stiffness by a factor of three and

one-half. For longer mounts, such as 1A and IB, the end effect is negligible.
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TABLE 1

Physical Data for the Isolation Mounts
Investigated Experimentally

Mount Length Diameter W. Mount
Designation inches inches pounds Mterial

1A 3.0 1.25 0.130 Soft rubber
1B 1.5 1.25 0.065 Soft rubber
1C 0.5 1.25 0.0217 Soft rubber

ID 0.25 1.25 ... Soft rubber

2A 3.97 1.25 0.204 Hard rubber

2B 1.96 1.25 0.101 Hard rubber

2C 0.51 1.25 0.0235 Hard rubber

2D 0.25 1.25 0.0134 Hard rubber

3 0.437 1.25 0.00274 Cell-tight rubber

4 ... ... 0.178 Steel helical spring

5 o.73 1.25 0.0259 Cozrene

TABLE 2

qomparison of Static and Dynamic Stiffness

The len gt of the womt is glvm in p]otb•theee belde the smint 4delat1mt.

Te frequency at utbloh the dpnmlo Silffanes VU obtained is given in peea-thees.

Mount Static Stiffness Dynamic Stiffness

lb/in. lb/in.

1A (3 in.) 95 111 (27.5 cps)

lB (0.5 in.) 185 204 (37.5 cps)

IC (0.5 in.) 850 .831 (80 cps)

1D (0.25 in.) 2800 3800 (150 cps)

2A (4 in.) 134 251 .(44 cps)

2B (2 in.) 275 571 (64 cps)
2C. (0.5 in.) 1140 3090 (145 cps)

2D (0.25 in.) 2600 18,000 (350 cpS)
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TABLE 3

Static Stiffness Versus Creep Time

Static Stiffness Static Stiffness(1 sec creep) (30 sec creep)

2A (4 in.) 167 134

2B (2 in.) 310 275

20 (0.5 in.) 1400 1140

2D (0.25 in.) 5600 2600

The dynamic stiffness was then obtained through use of the equation

K-Mwol. Table 4 presents the dynamic stiffness at different frequencies.

The behavior of mount 2D is of interest. In Table 2 it is seen that mount

2D had the largest difference between static and dynamic stiffnesses. Now

in Table 4, the dynamic stiffness of mount 2D is decreasing with decreasing

frequency and is approaching the static value. These data are noteworthy

since for the same material, save for a length of 4 in., there was no varia-

tion of the stiffness aside from the experimental; however, the frequency

range was different. For the 4-inch mount (2A), the data presented in Figure

12 show that the elastic moduli are relatively constant for frequencies up

to 1000 cps. Since this contradicts the data presented in Table 4 on the

0.25-inch mount (2D), the difference is quite possibly associated with the
"end effect."

TABLE 4

Dynamic Stiffness Versus Frequenny

Mount ID
Frequency Stiffness

cps I lb/in.

32.5 3980
0.0 2710

T-5 3220157 3800

Mount 2D
41 6340

116 14,500
1ý '1,500

3 0 19,000 1
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TABLE 5

Comparison of Computed and Measured Ratio of Standing
Wave Frequency to the Low Resonant Frequency

Computed Measured Percent Mount Mount

Error Designation Material

10.8 11.3 +4.6 1A Soft rubber
14.7 16.3 +10.9 1B Soft rubber

24.0 33.7 +40.5 1C Soft rubber
8.22 8.90 +8.3 2A Hard rubber

11.9 13.2 +11.0 2B Hard rubber

36.0 43.0 +16.0 3 Cell-tight rubber

9.0 9.6 +6.7 4 Helical spring

Table 5 presents a comparison between the computed value of the

ratio of the standing wave angular frequencies to the low resonant angular
frequency w/iwo and the experimentally measured value. It is to be noted

that while the agreement is reasonably good, the experimental value always

exceeds the computed value. This point is discussed further in the Appendix.
Table 6 presents the experimentally measured value of the dimen-

sionless damping parameter x. It is to be noted that.n is substantially con-

stant for a reasonably wide frequency range, but tends to slowly increase.

It is to be noted that at specific frequencies, the values of % given in

Table 6 are smaller for short mounts than for longer mounts of the same ma-

terial. This is a consequence of the rubber-metal bond which gives what has

been referred to in this paper as the "end effect."
Consider a rubber cylinder bonded to two infinitely stiff objects,

designated byM. Now the shear stress is'given by -r,, 1/2(as-ua) since the

principal axes are chosen to coincide with coordinate axes x and i. At great

distances from the constrained ends u, is nearly zero, and the shear stress

is a maximum. Near the constrained ends ey approaches P. /1 - P, and the

shear stresb decreases from its maximum value. Since the dissipation is pro-

portional to the time rate of shear strain, the "end effect" results in a

decrease of s.
There seems to be an equivalent point of view for seeing how this

reduction of i because of the end effect comes about. Since a wX 1/2Efor

a long thin cylinder, it is reasonable to expect that for more complicated

cases E should be replaced by an effective modulus for the particular region

in the material. Now we have seen in the Appendix that near the ends the

effective modulus is larger than E and hence % is decreased.
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TABLE 6

Values of the Damping Parameter a at the Resonant Frequencies

The mods numbr of the itanMlang ve Is designated by the subscrlpt attaeoed to
te dampin paraeoter a. The frequeuoy In cycles per eoand Is stated In paretothe..
boOsid the mosured vulues of .

""f Mount Mount0 Designation Material

0.025 (27.5) 0.070 (310) 0.14 (570) 1A Soft rubber

0.031 (37.5) 0.060 (610) 0.09 (1050) 1B Soft rubber

0.036 (80.0) ...... 1C Soft rubber

0.079 (44) 0.120 (400) 0.140 (800) 2A Hard rubber
0.090 (65) 0.11 (80) ... 2B Hard rubber

Figures 8 - 10, inclusive, present transmissibility and phase curves

for the various mounts whose data have been summarized in the preceding tables.

In Figures 8 - 10, inclusive, the theoretical curves based upon the
measured values of n are superimposed upon the experimental curves. As may

be seen, the agreement Is quite good. The theoretical curves were computed

on the assumption of constant velocity, which in turn implies a constant ef-

fective modulus. The agreement indicates that, as a first approximation,

this is a good assumption on which to predict the performance of a vibration

mount.
It is of interest to note in Table 5 the agreement between the com-

puted and measured values of waD/U for the helical spring. It may seem sur-

prising that, knowing the mass ratio

K/we and the low resonance angular _ __ _4U
frequency w., one is able to predict

the standing wave frequency without 20 Ow-
* 5'

knowing either the stiffness or the - C'

velocity of the elastic wave in the 21-2o 0

spring. A critical examination of ;14

the ways in which the mass ratio M/m -4e

was introduced as a parameter reveals I-eo_

that all this information is contain- _1

ed in its vklue. 100 q000 1n oo.
Frequency in cps8

Phase measurements were

eit was found in some Figure 8 - Superposition of Theoretical
made, because and Experimental Curves of Transmissi"
instances that this afforded a more bility T in db and Phase in degrees

sensitive method of detecting standing versug Frequency in cps
Mount IA, N/n =- 10.9
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Figure 9 - Superposition of Theoretical Figure 10 - Superposition of Theoretical
and Experimental Curves of Transmissi- and Experimental Curves of Transmissi-
bility T in db and Phase in degrees bility T in db and Phase in degrees

versus Frequency in cps versus Frequency in cps

Mount 1, /m -- 21.8 Rount 1C, M/f -- 8.3

wave frequencies than the transmissiblity. The phase is 90 degrees whenever

a longitudinal standing wave occurs. Inspection of the experimental data

reveals the characteristic behavior of the phase shifts associated with the

standing waves.

MEASUREMENS AND INSTRUMEFTATION
The transmissibility T is defined as the ratio of the force F

which the isolation muunt delivers to a base that consists of a rigid infinite

mass, to the exciting force F applied to the machine. We shall view the sys-

tem of the mass M plus the isolation mount as a four-terminal network a-b-c-d,

as represented in Figure 11, where G is the vibration generator and Z, is the

impedance of the machine. The transmissibility is given by

T FsF

where Fs. is the open circuit force at terminals c-d, which correspond to a

base of very high impedance.

It is convenient to use a theorem that simplifies the measurement

problem. This theorem says the transmissibility Is given by

V

where V is the velocity at terminals c-d, and VI is the short circuit veloc-

ity at terminals a-b.

Also, it is true that the ratio of accelerations is identical with

the ratio of velocities, since simple harmonic motion has been assumed.
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aThe meaning of this exeedingly use - a F

ful theorem is that instes .of meosuring torces in

when determining the transmissibility, one can b

measure the acceleration- with acceleromet'rs. Figure 11- Representation of
m Isolation Mount and the

The latter measurement is considerably simpler. Machine as a Four-

The proof Of the theorem Is as follows: Terminal Network

If terminals c-d are shorted, by Thevenin's theorem a Velocity V16FP, /Zaj

will result. Zod is the impedance measured between terminals c-d. Now if

terminals a-b are short circuited and the generator is applied to terminals

c-d, this is equivalent to applying a force F-VZed to the terminals. Also,

a velocity V., will appear at terminals a-b. Now by the reciprocity theorem,
V Vo

If the substitutions Vw FN, /Z~d and F'-VZ, are made,. one obtains

T -,.VA Q.E.LA
F V

A block diagram of a simple measurement system is shown in Figure

12.

The vibration generator must be carefully adjusted to assure only

vertical motion of the generator. The isolation mount is then stud-bolted in

place and Nassa accelerometers, Model 127, are secured in positions 1 and 2

as indicated:.

The vibration generator is then driven by an oscillator-power amp-

lifier combination at any desired frequency, and the amplitude and phase re-

lationships of the outputs from the two accelerometers are measured. The

difference in the amplitude readings measured in decibels relative to an ar-

bitrary reference voltage gives the modulus of the transmissibility in deci-

bels, and the phase measurement gives the phase angle of the transmissibility.

The signal to noise ratio was improved by using a General Radio,

Model 736A, 4-cycle, band-width analy-

zer to make the measurements, both of

amplitude and phase. Unfortunately, Acceeromete L
the analyzer is difficult to tune and T W

must be calibrated frequently if accu- •M•un Voltt

rate data are to be obtained. To fa- *,* 
motor

cilitate the measurements, a system was lb.

devised for providing a signal to drive

the power amplifier, to which the ana-
lyzer is automatically tuned. This eFigure 12 - Diagram of Simple Measuring
greatly simplified the work, and it be- System for the Testing of

came evident that if a device could be Isolation Mounts
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I. .I. IReoorder Potetiomee

ContolReorde roLpol
AlOeellloter

a Servomechanism for Maintaining Constant Acceleration

1. To Imama •enm lb111ty m tavistobe. A *, I Imst be In
poeltlom 1.

2. To meu'w. tzanmL~batbI1lt7 m ]• avimdtohN A "riS rot be in
"posetlom 2.

constructed which would provide a constant acceleration output from the gen-
erator, direct recordings of transmissibility would be possible. Such a

device was constructed, utilizing the servomechanism of an FR-i recorder.
The block diagram of the entire system is shown in Figure 13.

The phase meter isa system of comparing voltages by the voltage
vector triangle method. It is possible to make measurements of phase between

undistorted signals ih the range from 50 to 10,000 cps to an accuracy greater
than ±+1 degree for angles between 0 and 180 degrees. In principal, the sane

accuracy can be obtained by using the analyzer as a voltmeter for badly dis-
totted signals. Theiphase meter accuracy is iited bylthe accutacy with

which the voltage readings can be taken. p b"

ENGINEERING IMPLICATIONS
In discussing how the experimental results bear on the problem of

designing an isolation mount, the narrow viewpoint is adoptc ed that noise re-
ductlon is the only goal. All other Qonsiderations, such as shock, damage,

etc., are neglecmed. In other words, the discussion is limited to that of p

machine that is subject to no outside influence, and the sole problem is to
isolate the noise that is generated when the machine runs from the foundation
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upon which the machine is sitting.

The importance of high damping has been noted elsewhere. The de-

sirability of high damoing is clearly indicated. If the damping is prescribed

by some condition, the shape of the mount may still be varied. It is clear

from the theoretical curves that if the low resonant- angular frequency w. is
specified, a large mass ratio M/m is desirable. This means that both the

length and the cross-sectional area of the mount should be as small as possi-
ble. But there is a limit as to how small the area S-can be. Because of

the weight M. of the machine, a strain is caused in the mount material that

is given by Mstrain -- -

where E is the modulus of the material. There is a maximum permissible value

for this strain because of considerations of creep, strength, etc. When the

mount material Is specified along with this value of maximum strain, then the

minimum value of S is specified. Now since the stiffness K is given by

ES
KI.

and since ie*f and M are specified, K is specified. Then I is also specified,

since S is given by the maximum permissible strain specification. Further-

more, this value of I is the minimum value under the circumstances. The

preceding argument is perfectly consistent with another way of thinking about

the matter. If the objective were to increase the standing wave frequencies
to a high value, then one would minimize 1. If w. and M, and hence K, were

specified, then ES would be minimized, since I is minimized. However, in

minimizingES, the maximum strain specification must be observed, and thus

the sane conclusion is reached.
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APPENDIX

THE VELOCITY OF COMPRESSION WAVES IN CYLINDRICAL
MOUNTS AND THE END EFFECT

It was noted earlier that certain approximations were made in de-

riving the basic differential equation. The more exact theory is discussed

elsewhere.6 This reference shows that when the wavelength becomes an appreci-

able fraction of the diameter of the cylinder, there results a decrease in

velocity from the value given by C, - (E/p)-/. To a first approximation this

decrease in the velocity is caused by the radial motion. The inertia associ-

ated with this radial motion was neglected in the derivation3 of the wave

equation. If it is included it can be thought of as an increase of the de-

nominator of the expression C. - (R/p)1/2, and hence, It results in a decrease

in velocity. Figure 14 presents the velocity dispersion curve. The abscissa

is the ratio of diameter to wavelength, and the ordinate is the ratio of ac-

tual velocity to C9.

Other approximations that affect the velocity have been made.

Small damping was assumed to obtain Equation [6]. If such an assumption had

not been made, the phase velocity of the wave would have been approximately

CCa ¢ (1 + %2/2).
There Is still another approximation that is important. Near the

ends of the cylinder that are bonded to the relatively stiff metal blocks

the effective modulus of the material increases. As already noted in Table

2, this results in an increase in effective modulus. Figure 15 presents some

typical data for the effective modulus of cylinders with varying length to

diameter ratios. It is easily seen that the "end effect," which is associated

with the rubber-metal bond, results in a higher effective modulus for the

rubber. What is not so easily seen
is that it has a different influence

.- - - -upon both the low frequency resonant
as •waves and the standing waves. In Table

u• ? -- -3 it was shown that the observed value

- - - of WU/1D was always larger than the

-s -computed value. It will now be shown

o O 1. .2 1I.A [A .0 that this could be a consequence of

Sgthe "end effect" having a different

influence upon the low resonant fre-
Figure 14 - Ratio of Longitudinal Wave quency and the standing wave frequen-

Velocity in a Circular Cylinder to
the Young's Modulus Velocity cies.
As a Function of Diameter Consider a mount constructed

to Wavelength Ratio d/X
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of two materials of moduli Vand V

as illustrated in Figure 16. The mount

at the low frequency resonance can be

thought of as having two stiffnesses K,---o -- /-- .
and K, where K' 2E/ and a. corres-210

ponding relation holds for I"f(Iand S S---oo

are the length and cross-sectional area 4000

of the mount). Now v. will be given by 20

Wit (K/), where K-K'VK 1(K+KJr). •
If one then attempts to compute the

velocity based on the measured values

of M and by means of the equation Figure 15 - Effective Modulus versus
Diameter to Length Ratio for a

K' 1  -K-1/" Circular Cylinder with
Gg(--•} Constrained Ends

a misleading answer is obtained, as will now be shown.
The velocity Cp, which determines w,, the standing wave angular

frequency, is the average velocity for the entire length of the mount. It

will now be demonstrated that C, is always larger than C,.
The velocities in the different parts of the mount are

c. __
2!'

if_ I2t"

where tVand t"are the times required by the wave to tra=vel through the differ-

ent parts of the mount. Now the velocity C1 is

-t +t)

Substituting the previous expressions for C 'and C "gives

C, 2 CIC1C'9.¢+ C"

Writing this in terms of the moduli Eand E ' one obtains

C 2 (RIET')

Figure 16 -,Diagram of an Isolation 4-
Nouzjt Constructed of Two Materials

of Differing Young's
Modulus V and 9"
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Writing Ce in terms of B'and EP"gives
1 /2\ (1

Consider now the ratio CI/Ce. This is

- 21/ (E'.+ E)')1

and is clearly larger than unity, except when E'E , in which case it be-
comes equal to unity. All the theoretical curves and standing wave frequen-
cles are computed on the basis of constant velocity of the wave in the mount
where tIhe velocity is based upon data obtained at the low frequency resonance.
Hence, it is to be expected that there will be discrepancies of the type ob-
served in Table 5.

This special case follows from a more general theorem that is not
yet ready for publication.

To summarize, the velocity of the elastic wave In a compression
mount with constrained ends is subject to three influences. The velocity will
tend to decrease with increasing frequency because of the radial motion. The
value of the damping parameter s tends to increase with increasing frequency,
and this results in an increase in velocity. The "end effect" results in an
effective increase in velocity with increasing frequency. These three influ-
ences co-exist and make a precise prediction of the variation of velocity
with frequency exceedingly difficult.
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